Technical Assignment 2

Design Load Estimation and Energy Analysis

City of Hope: Amini Medical Center Duarte, CA

Christopher Bratz

Pennsylvania State University Architectural Engineering Mechanical Option

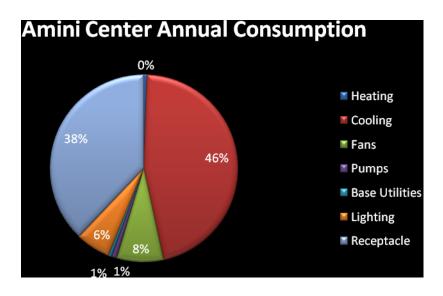
Faculty Advisor: Dr. Jelena Srebric

October 24th, 2008

Table of Contents

xecutive Summary
bad Estimation5
nergy Analysis8
eferences10
PPENDIX A – AHU Schematic
PPENDIX B – Wall & Glazing Breakdown
PPENDIX C – AHU Load Capacities
PPENDIX D – Schedules
PPENDIX E – Monthly Utility Costs

APPENDIX F - EnergyPro Results / Energy Cost Budget


Executive Summary

Many factors and assumptions are taken into account when trying to determine the cooling load needed for a room or building. Some factors include climate data, envelope loads, internal loads, and ventilation air loads. To accurately estimate the loads of an entire building would take an engineer hours to calculate by hand. Due to advancements in technology, computer programs exist to help an engineer calculate cooling capacities much quicker. One particular program, TraneTrace 700, was used for the first part of this report to simulate the load needed to cool the Amini Medical Center.

After inputting the building envelope, people, lighting, plug load, and climate data for the Amini Center, based on the construction documents, the program then calculated the cooling capacities I would expect to see for this building. This particular simulation involved only 35,000 ft² of the center due to empty shell plans for the entire third floor. The simulation looked at two units serving lab areas on the first floor and another unit serving administrative and office areas on the remaining first floor and second floor. Overall for the space, the cooling capacity for the lab areas ranged from 115 - 190 ft²/ton, while the office area unit saw about 471 ft²/ton. This difference in capacity makes sense in this building because the lab spaces see a much higher internal load due to the many pieces of equipment contained in them.

The second part of this report investigates the energy consumption and cost associated with running the Amini Medical Center for one calendar year. To aid in estimating the consumption and cost to run this facility, the TraneTrace 700 program required more input.

To try and accurately model the space, schedules were created to simulate occupancy, lighting, equipment, ventilation, utility rate schedules, and other factors that have an effect on energy consumption and cost. After plants were created and all schedules were assigned, the program simulated the equipment consumption and produced the dollar figure it would cost to run this facility based on the inputs. For my simulation the energy consumption broke down as follows:

Total cost to run this facility was calculated to be \$113,208 per year which ends up being \$3.26/ft².

For the overall experience of using Energy Models, I believe they can be very beneficial tools to help produce information in a short amount of time. Due to the amount of input needed to

generate results, errors seem easy to come by. I don't believe they are good tools for estimating a building's electric bill due to the many assumptions that have to be made. Because this was a fast paced model simulation, I don't believe I spent enough time to develop a truly accurate figures. The values generated, however, do provide much insight into the building and how it will function.

Load Estimation

To aid in determining the cooling loads required for the Amini Medical Center, the TraneTrace 700 program was utilized. Due to the third floor remaining vacant on the construction documents received, this area was not included in the following analysis. This estimate will only include the cooling loads required for three air-handling units (AHUs) serving the first and second floors, along with fan coil units (FCUs) serving special need areas of the building. For a schematic of theses units and the areas they serve, please refer to Appendix A.

To determine the loads required for each HVAC unit, building envelope load, occupancy load, lighting load, plug load, ventilation air load, and climatic data were input into the program using the construction documents as a reference.

<u>Inputs</u>

Building Envelope:

The Amini Center building envelope consisted of three typical wall types and one specific glazing type. The u-values entered into the program for these wall types and glazing values can be viewed below. Refer to Appendix B for a more detailed breakdown of these entered values.

Construction	U-Value Btu/h*ft2*F	SC
Stone Wall	0.043	-
Fire/Stucco Wall	0.039	-
Spandrel Glass Wall	0.045	-
Glazing	0.26	0.43

Occupancy:

For this estimation, occupancy for each room was taken from the Architectural drawings. Maximum load was assumed to be the maximum number of chairs or seating locations in each room. Each person was assumed to giver off 250 Btu's sensible heat and 200 Btu's latent heat.

Lighting:

Lighting for every space was assumed to 0.85 W/ft², which happens to be the designed lighting density for this building, as seen in Technical Assignment 1.

Plug Load:

Plug load, or room equipment heat load, for this building was estimated on a room by room basis. Due to the assortment of equipment in lab areas and IT rooms, a general W/ft² load would produce inaccurate results. For these lab areas, I referred to a LEED energy model created by the design team and inserted the loads the design team used.

For general office areas, I estimated the equipment heat loads for computers, printers, copiers, etc. Refer to the Table below for some general equipment loads that were assumed in the office spaces.

Equipment	Heat Load Watts	Equipment	Heat Load Watts
Computer	155	Refrigerator	300
Desktop Printer	100	Microwave	300
Copier	400	Toaster	100
Fax Machines	100	Coffee Maker	200

Ventilation Air:

Supply air for each room was input based on the construction documents. In doing so, each AHU and FCU ventilation percentage was also input based on the minimum outdoor air (OA) quantity listed on the drawing schedules.

Climate Data:

The Amini Medical is being constructed in Duarte, California, a suburb of Los Angeles. For this estimation the Trace program is equipped with regional weather data from around the world. The weather data selected for this project was Pasadena, Ca, 10 miles away from this building site. Design conditions for this region are as follows:

Inc	door Co	onditions		Outdoor Conditions							
Sun	nmer	Winter	Sun	nmer	Winter	Clearn	ess	Grou Reflecta	-	CO2 Level	
DB	RH	DB	DB WB		DB	Summer	Winter	Summer	Winter	PPM	
72	50	72	95 68		29	1.05	0.95	0.2	0.2	400	

Output Results

The following table summarizes the results of my cooling load estimation and compares them to the capacities scheduled on the design documents. For a more detailed breakdown of the Trace load capacities, refer to Appendix C.

	Trace	e Program	Design	Documents		Trace	e Program	Design Documents		
Unit	Total	Sensible	Total Sensible		Unit	Total	Sensible	Total	Sensible	
	MBH	MBH	MBH MBH			MBH	MBH	MBH	MBH	
AHU-1	259.0	145.5	277.6	264.0	AHU-2	392.5	319.9	453.8	440.1	
AHU-3	608.3	525.0	751.0	680.6	FCU-1-1	5.0	4.9	10.8	6.2	
FCU-1-2	15.1	15.1	47.3	38.3	FCU-1-3	45.2	45.2	100.4	55.2	
FCU-1-4	7.6	7.5	17.4	10.4	FCU-1-5	132.1	97.5	91.1	82.9	
FCU-2-1	49.4	49.4	72.4	58.6	FCU-2-2	17.3	17.3	3.5	2.8	
FCU-2-3	9.3	9.3	3.5	2.8	FCU-2-4	10.4	10.4	8.1	6.5	

Discussion:

AHUs

In comparison to the estimated load calculations, AHU-1, 2 & 3 scheduled vary in total capacity by 6.7%, 13.5%, and 19% respectively. On a $\rm ft^2/ton$ basis the differences between estimated and calculated are as follows:

	Estimated	Design Documents
Unit	ft2/ton	ft2/ton
AHU-1	115	107
AHU-2	191	165
AHU-3	471	382

In viewing these calculations it appears that AHU-1 is pretty close to the actual scheduled unit and AHUs 2 & 3 are estimated to be a significant tonnage lower in capacity.

These capacity differences can be caused by a countless number of reasons, or a combination of reasons. Some reasons for the lower estimated values could include climate data, indoor design conditions, underestimating internal loads, and other differences, even calculation methodology.

FCUs

Because the loads in the rooms the fan coil units serve were taken from the design engineer EnergyPro simulation, the loads should match what was scheduled. Looking at the table above however shows that some FCUs are close to the scheduled capacities while others are well below or well over the design documents.

For these rooms, load calculations are hard to estimate and should be supplied to the design engineer to avoid any over or under sizing of equipment. The values estimated/taken from EnergyPro program could be old values that were initially intended for the rooms but were changed later during design.

Energy Analysis

This part of the report focuses on the energy used and the estimated cost to run the Amini Medical Center for one calendar year. The simulation program used for this analysis was the TraneTrace 700 program. The model described in the load estimation above is the exact model being run for the energy study.

Inputs

Systems & Plants:

For this simulation all air handling units were modeled as VAV Reheat systems, 30% minimum flow. Specific areas containing constant volume units had the default 30% minimum flow reset for 100% minimum flow. All supply air and outdoor air quantities for these units were input and locked to match the design documents. Fan coil units were modeled as such with the supply air set by the construction documents air flows.

Because this building is served by a central campus heating and cooling plant, the energy simulation was modeled as a purchased chilled water system and a purchased steam system. The energy analysis also includes the chilled water pumps and heating water pumps that run water throughout the building.

All fans including supply, return, exhaust, toilet exhaust and lab exhaust fans were modeled and input based on the BHP and air quantity. All fan energies were input as KW/cfm.

Exterior lighting was accounted for as a base utility, setting total KW for the lights on a schedule.

Operation Schedules:

Because buildings are not occupied 24/7 and all equipment and lighting is not in operation 24/7, schedules need to be made to try and simulate the actual building operation. For the Amini Medical Center, the design engineer created a model in EnergyPro to simulate the buildings operation. For this report, I looked over the schedules the engineer made and created the same schedules in this program. Please refer to Appendix D for all the schedules that were created.

Fuel Costs:

To estimate the actual cost that the building owner might see, energy rates need to be defined setting the cost per energy rate. For this building in Duarte California, the rate structure for SCE was used. Refer to the end of Appendix D for this rate schedule.

<u>Outputs</u>

Energy Consumption:

The energy consumption shown in the table below gives the break down for the Amini Medical Center.

	Elec Consumption (kwh)	Purchased Chilled Water (kBtu)	Purchased Steam (kBtu)	% Total Energy	Total Building Energy (kBtu/yr)	Total Source Energy (kBtu/yr)
Primary Htg			26,204	0.54	26,204	34,939
Other Htg Accessories	249			0.02	849	2,548
Primary Cooling		2,233,676		46.07	2,233,676	1,718,212
Supply Fans	113,671			8.00	387,959	1,163,993
Pumps	13,050			0.92	44,539	133,631
Base Utilities	8,038			0.57	27,434	82,310
Lighting	85,055			5.99	290,294	870,968
Receptacle	538,374			37.90	1,837,470	5,512,961
Totals	758,437	2,233,676	26,204	100	4,848,425	9,519,562

From this table it is easy to conclude to conclude that this is a cooling dominated building. From the weather conditions, internal loads, and envelope load; it does make sense that the building will be in cooling mode most of the time.

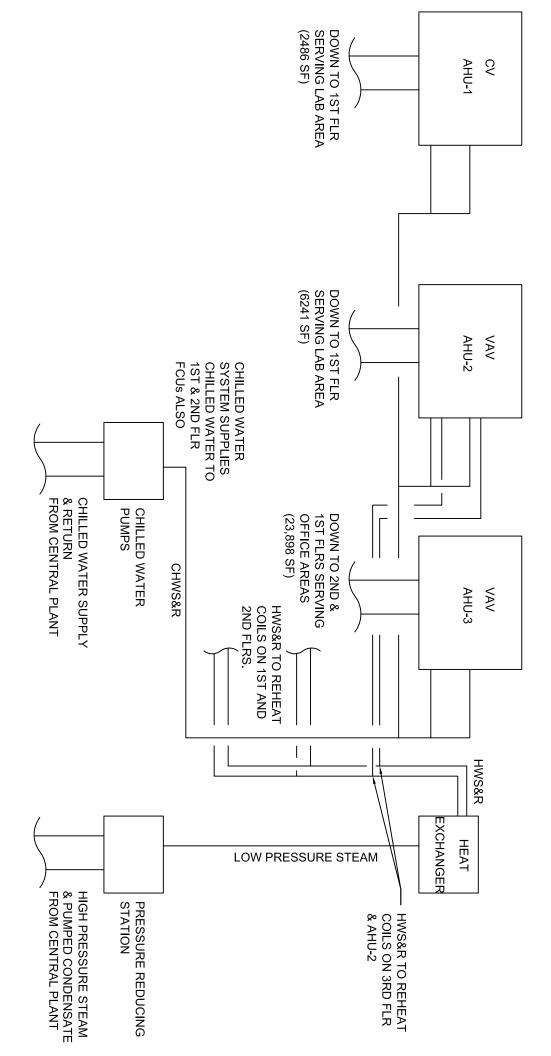
Annual Operation Cost:

According to the model simulation, it will cost the Amini Medical Center \$113,208 per year to operate under the design conditions above assuming no change to energy prices throughout the year. The annual breakdown per square foot ends up being 3.26\$/ft². Considering only the first two floors of this building were modeled, and the occupancy of these floors, I feel the operation cost does give a relatively accurate estimate for the building type. For the Trace Monthly Utility Costs, refer to Appendix E.

Design Engineer Energy Simulation:

Because this project is going for a LEED Gold rating, the design engineer produced an energy model comparison showing the saving of the Amini Medical Center design compared to a baseline building specified by LEED. The design engineer's energy model for the Amini Center resulted in a similar breakdown of energy use as shown in this report. The report indicates the building is a cooling dominated building. The cost indicated by the engineer's report indicates an annual energy cost of \$3.84/ft² which is relatively close to the annual energy cost I had simulated. Please Refer to Appendix F for the EnergyPro reports and my simulated Energy/Cost budget.

Discussion:


For the overall experience of using Energy Models, I believe they can be very beneficial tools to help produce information in a short amount of time. Due to the amount of input needed to generate results, errors seem easy to come by. I don't believe they are good tools for estimating a building's energy bill due to the many assumptions that have to be made. Because this was a fast paced model simulation, I don't believe I spent enough time to develop a truly accurate figures. The values generated, however, do provide much insight into the building and how it will function.

References

ASHRAE. 2005, 2005 ASHRAE Handbook – Fundamentals. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc., Atlanta, GA. 2001.

EwingCole. 2007. <u>City of Hope: Amini Medical Center Construction Documents and Specifications</u>. EwingCole, Irvine, CA

<u>Appendix A</u> AHU Schematic

<u>Appendix B</u> Wall & Glazing Breakdown

Wall - Construction Types

COH_Typ Fire Wall

Layer	Code	Description		Thickne	SS	Conductivity	Density		Specific Heat	Resis	tance		
1	M161	Outside Air Film	1							0.25	ft²∙hr∙°F	/Btu	
2	M153	5/8" Gyp Board								0.56	ft²∙hr∙°F	/Btu	
3	M153	5/8" Gyp Board								0.56	ft²∙hr∙°F	/Btu	
4	M208	6" Thermafiber	FS-25							22.80	ft²∙hr∙°F	/Btu	
5	M153	5/8" Gyp Board								0.56	ft²∙hr∙°F	/Btu	
6	M158	Inside Air Film								0.68	ft²∙hr∙°F	/Btu	
Lamda Delta	= '	1.00 0 hours	Weight Heat Capacity		0.00 0.00	lb/ft² Btu/ft²⋅lb⋅°F	U-Value C-Coefficient	= =	0.039 Btu/hr·ft ^{2.} °F 0.0400 Btu/hr·ft ^{2.} °F		Alpha	=	0.90

COH_Typ Stone Wall

Layer	Code	Description		Thickne	ess	Conductivity	Density		Specific Heat	Resis	tance		
1	M161	Outside Air Film	ı							0.25	ft²∙hr∙°F/E	∃tu	
2	M207	Limestone Faca	ade							1.20	ft²∙hr∙°F/E	∃tu	
3	B0	Air Space Resis	stance							0.91	ft²·hr·°F/E	3tu	
4	M153	5/8" Gyp Board								0.56	ft²·hr·°F/E	∃tu	
5	M176	R-19 Batt								19.00	ft²·hr·°F/E	3tu	
6	M153	5/8" Gyp Board								0.56	ft²·hr·°F/E	∃tu	
7	M158	Inside Air Film								0.68	ft²∙hr∙°F/E	∃tu	
Lamda Delta	= 1. =	00 0 hours	Weight Heat Capacity	= =	0.00 0.00	lb/ft² Btu/ft²·lb·°F	U-Value C-Coefficient	= =	0.043 Btu/hr·ft ^{2.} °F 0.0400 Btu/hr·ft ^{2.} °F		Alpha =	:	0.90

Wall - Construction Types

COH Spandral Glass Wall

Layer	Code	Description		Thickne	ss	Conductivity	Density		Specific Heat	Resis	stance		
1	M161	Outside Air Film	ı							0.25	ft²·hr·°F/	Btu	
2	M205	COH Spandral	Glass							3.85	ft²∙hr∙°F/	Btu	
3	M206	4" CB 300 Com	mercial Brd							17.40	ft²∙hr∙°F/	Btu	
4	M158	Inside Air Film								0.68	ft²∙hr∙°F/	Btu	
Lamda	=	1.00	Weight	=	0.00	lb/ft²	U-Value	=	0.045 Btu/hr·ft ^{2.°} F		Alpha	=	0.90
Delta	=	0 hours	Heat Capacity	=	0.00	Btu/ft²·lb·°F	C-Coefficient	=	0.0500 Btu/hr·ft ^{2.} °F				

				Glass types			
COH_Vision Glass	SS			Properties based on Std	DS Glass		
N	Number of Panes		2	Visible Transmissivity	0.67	Inside Solar Reflectivity	0.11
s	Shading Coeff	0.43		Inside Visible Reflectivity	0.11	Outside Long Wave Emissivity	0.90
G	Glass U-Value	0.26	Btu/hr⋅ft²⋅°F	Solar Transmissivity	0.29	Inside Long Wave Emissivity	0.90
				Lights			
Fluorescent, hung	g below ceiling, 100	% load to	space				
	i g below ceiling, 100 Fixture Type		space FLUOR	Longwave Radiant Fraction	67 %		
Fi		SUS	-	Longwave Radiant Fraction Shortwave Radiant Fraction	67 % 0 %		
Fi Pe	ixture Type	SUS	FLUOR	•			
Fi Pe	Tixture Type Percent Lights to RA	SUS	FLUOR 0 %	•			_
Fi Pe	Prixture Type Percent Lights to RA Ballast Factor	SUS	FLUOR 0 %	Shortwave Radiant Fraction			_
Fi Pe Bi Std Office Equipn	Prixture Type Percent Lights to RA Ballast Factor	SUS 1.	FLUOR 0 %	Shortwave Radiant Fraction	0 %	iant Fraction 60 %	_

Appendix C System Load Capacities

System Checksums By META ENGINEERS

Variable Volume Reheat (30% Min Flow Default)

	COOLING C	OIL PEAK			CLG SPACE	PEAK		HEATING CO	IL PEAK		TEM	PERATURE	S
Peake	ed at Time:	Mo/I	Hr: 8 / 15		Mo/Hr:	2/10		Mo/Hr: He	ating Design			Cooling	Heating
C	Dutside Air:	OADB/WB/H	IR: 92 / 69 / 7	73	OADB:	62		OADB: 29			SADB	68.4	72.3
											Plenum	72.1	71.9
	Space	Plenum	Net	Percent	Space	Percent		Space Peak	Coil Peak	Percent	Return	72.1	71.9
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total		Space Sens	Tot Sens	Of Total	Ret/OA	82.8	48.7
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)	Fn MtrTD	0.3	0.0
Envelope Loads				:			Envelope Loads				Fn BldTD	0.8	0.0
Skylite Solar	0	0	0	0 :	0	0	Skylite Solar	0	0	0.00	Fn Frict	2.3	0.0
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00			
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00			
Glass Solar	1,513	0	1,513	1	8,137	28	Glass Solar	0	0	0.00			
Glass Cond	719	0	719	0	-390	-1	Glass Cond	-1,605	-1,605	0.73			
Wall Cond	373	395	768	0	482	2	Wall Cond	-561	-1,155	0.53	A	IRFLOWS	
Partition	0		0	0 :	0	0	Partition	0	0	0.00		Coolina	Heating
Exposed Floor	0		0	0 :	0	0	Exposed Floor	0	0	0.00	Vent	4,103	4,102
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00	Infil	4,103	4,102
Sub Total ==>	2.605	395	3.000	1	8.230	28	Sub Total ==>	-2,165	-2,760	1.26		7,570	7,570
	_,		-,		-,			_,	_,		Supply MinStop/Rh	7,570	7,570
nternal Loads							Internal Loads						
											Return	6,370	7,570
Lights	6,491	0	6,491	3	,	22	Lights	0	0	0.00	Exhaust	2,903	4,102
People	3,600		3,600	1	,	7		0	0	0.00	Rm Exh	1,200	(
Misc	9,672	0	9,672	4 ;	11,410	39	Misc	0	0	0.00	Auxiliary	0	(
Sub Total ==>	19,763	0	19,763	8	19,901	68	Sub Total ==>	0	0	0.00			
Ceiling Load	39	-39	0	0	45	0	Ceiling Load	-52	0	0.00	ENGI	NEERING C	ĸe
/entilation Load	0	0	200,017	77	0	0	Ventilation Load	0	-190,269	86.99	LINGI		NO
Adj Air Trans Heat	971		971	0	971	3	Adj Air Trans Heat	0	0	0		Cooling	Heating
Dehumid. Ov Sizing	a		0	0			Ov/Undr Sizina	0	0	0.00	% OA	54.2	54.2
Dv/Undr Sizing	7,376		7.376	3		0	Exhaust Heat		294	-0.13			
Exhaust Heat	.,	-155	-155	0	-	-	OA Preheat Diff.		-41	0.02	cfm/ft ²	3.05	3.05
Sup. Fan Heat			28,037	11			RA Preheat Diff.		-25,953	11.87	cfm/ton	350.72	
Ret. Fan Heat		0	0	0			Additional Reheat		_0,000	0.00			
Duct Heat Pkup		Ő	0 0	0					Ū		ft²/ton	115.18	
Reheat at Design		2	0	0							Btu/hr·ft²	104.19	0.00
Grand Total ==>	30,753	202	259,010	100.00	29,154	100.00	Grand Total ==>	-2,218	-218,730	100.00	No. People	16	

	Total ton	Capacity MBh	COOLING Sens Cap. MBh	COIL SELE Coil Airflow cfm	-	N ter DB/V °F	VB/HR gr/lb	Leav °F	re DB/W °F	/B/HR gr/lb		AREA Gross Total	S Glas ft ²	ss (%)	HEA		SELECTIO Coil Airflow cfm		Lvg °F
Main Clg Aux Clg	21.6 0.0	259.0 0.0	145.5 0.0	7,569.9 0.0	82.8 0.0	62.4 0.0	54.4 0.0	65.0 0.0	50.3 0.0	32.4 0.0	Floor Part	2,486 0			Main Htg Aux Htg	0.0 0.0	7,570.0 0	65.0 0	72.3 0
Opt Vent	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr Roof	0 0	0	0	Preheat	0.0	4,103	29	65
Total	21.6	259.0									Wall	765	142	19	Humidif Opt Vent <i>Total</i>	0.0 0.0 0.0	0 0	0.0 0.0	0.0 0.0

 Project Name:
 City of Hope Amini Medical Center

 Dataset Name:
 C:\CDS\TRACE700\Projects\COH.trc

TRACE® 700 v6.1.3 calculated at 08:24 PM on 10/26/2008 Alternative - 1 System Checksums Report Page 1 of 12

AHU-1

System Checksums By META ENGINEERS

AHU-2

Variable Volume Reheat (30% Min Flow Default)

	COOLING C	OIL PEAK			CLG SPACE	PEAK		HEATING CO	IL PEAK		TEM	PERATURE	S
Peake	ed at Time:	Mo/H	Hr: 8 / 17		Mo/Hr:	7/11		Mo/Hr: He	ating Design			Cooling	Heating
C	Dutside Air:	OADB/WB/H	R: 90 / 68 / 7	74	OADB:	84		OADB: 29			SADB	62.8	72.3
											Plenum	72.1	71.9
	Space	Plenum	Net	Percent	Space	Percent		Space Peak	Coil Peak	Percent	Return	72.1	71.9
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total		Space Sens	Tot Sens	Of Total	Ret/OA	79.5	53.8
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)	Fn MtrTD	0.3	0.0
Envelope Loads				:			Envelope Loads				Fn BldTD	0.8	0.0
Skylite Solar	0	0	0	0		0		0	0	0.00	Fn Frict	2.3	0.0
Skylite Cond	0	0	0	0		0	Skylite Cond	0	0	0.00			
Roof Cond	0	0	0	0		0	Roof Cond	0	0	0.00			
Glass Solar	17,415	0	17,415	4	-,=	2		0	0	0.00			
Glass Cond	1,225	0	1,225	0	,	1	01000 00110	-2,979	-2,979	0.73			
Wall Cond	2,335	2,112	4,447	1	842	1	Wall Cond	-1,704	-3,192	0.78	A	IRFLOWS	
Partition	0		0	0 :		0		0	0	0.00		Cooling	Heating
Exposed Floor	0		0	0 3	0	0	Exposed Floor	0	0	0.00	Vent	6,208	6,207
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00	Infil	0,200	0,201
Sub Total ==>	20,975	2,112	23,087	6	4.722	3	Sub Total ==>	-4,683	-6.171	1.51	Supply	14,710	14,710
	-,	,	-,		,	-		,	-,	-	MinStop/Rh	14,710	14,710
nternal Loads				:			Internal Loads				Return	14,710	14,710
	10.005	•	40.005					<u>^</u>			Exhaust	6.076	6,207
Lights	16,295	0	16,295	4		11	J	0	0	0.00		132	6,201
People	9,000	•	9,000	2		3		0	0	0.00	Rm Exh		
Misc	100,242	0	100,242	26	· · ·	82	Misc	0	0	0.00	Auxiliary	0	(
Sub Total ==>	125,537	0	125,537	32	140,877	96	Sub Total ==>	0	0	0.00			
Ceiling Load	236	-236	0	0			Ceiling Load	-165	0	0.00	ENGI	NEERING C	ks
Ventilation Load	0	0	186,390	47 :	. 0	0	Ventilation Load	0	-287,930	70.40		-	-
Adj Air Trans Heat	840		840	0	886	1	Adj Air Trans Heat	0	0	0		Cooling	Heating
Dehumid. Ov Sizing	a		0	0			Ov/Undr Sizing	0	0	0.00	% OA	42.2	42.2
Dv/Undr Sizina	2,887		2,887	1	8	0	Exhaust Heat		559	-0.14			
Exhaust Heat	,	-781	-781	0			OA Preheat Diff.		-11	0.00	cfm/ft ²	2.36	2.3
Sup. Fan Heat			54,482	14			RA Preheat Diff.		-115,419	28.22	cfm/ton	449.75	
Ret. Fan Heat		1	1	0			Additional Reheat		0	0.00			
Duct Heat Pkup		0	0	0					-		ft²/ton	190.81	
Reheat at Design		2	0	0							Btu/hr·ft²	62.89	-32.98
Grand Total ==>	150,475	1,096	392,444	100.00	146,566	100.00	Grand Total ==>	-4,848	-408,973	100.00	No. People	40	

	Total ton	Capacity MBh	COOLING Sens Cap. MBh	COIL SELE Coil Airflow	-	DN ter DB/\ °F	NB/HR gr/lb	Leav °F	∕e DB/W °F	/B/HR gr/lb		AREA Gross Total	S Glas ft ²	ss (%)	HEA		SELECTIC Coil Airflow cfm		Lvg °F
Main Clg Aux Clg	32.7 0.0	392.5 0.0	319.9 0.0	14,710.0 0.0	79.5 0.0	63.4 0.0	64.8 0.0	59.3 0.0	54.4 0.0	57.5 0.0	Floor Part	6,241 0			Main Htg Aux Htg	-205.9 0.0	14,710.0 0	59.3 0	72.3 0
Opt Vent	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr Roof	0 0	0	0	Preheat	0.0	6,208	29	59
Total	32.7	392.5									Wall	2,027	264	13	Humidif Opt Vent <i>Total</i>	0.0 0.0 -205.9	0 0	0.0 0.0	0.0 0.0

 Project Name:
 City of Hope Amini Medical Center

 Dataset Name:
 C:\CDS\TRACE700\Projects\COH.trc

System Checksums By META ENGINEERS

Variable Volume Reheat (30% Min Flow Default)

	COOLING C	OIL PEAK			CLG SPACE	PEAK		HEATING CO	IL PEAK		TEM	PERATURE	S
Peake	ed at Time:	Mo/ł	Hr: 8 / 17		Mo/Hr:	9/16		Mo/Hr: He	ating Design			Cooling	Heating
C	Dutside Air:	OADB/WB/H	R: 90 / 68 / 7	4	OADB:	91		OADB: 29			SADB	61.9	76.2
											Plenum	72.2	71.6
	Space	Plenum	Net	Percent	Space	Percent		Space Peak	Coil Peak	Percent	Return	72.2	71.6
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total		Space Sens	Tot Sens	Of Total	Ret/OA	76.6	39.1
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)	Fn MtrTD	0.3	0.0
Envelope Loads							Envelope Loads				Fn BldTD	0.8	0.0
Skylite Solar	0	0	0	0 :	0	0		0	0	0.00	Fn Frict	2.3	0.0
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00			
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00			
Glass Solar	100,552	0	100,552	17	,	35	Glass Solar	0	0	0.00			
Glass Cond	12,561	0	12,561	2		5	Glass Cond	-30,545	-30,545	7.89			
Wall Cond	6,160	6,579	12,739	2 ;		2	Wall Cond	-7,087	-14,090	3.64	A	IRFLOWS	
Partition	0		0	0 ;		0	Partition	0	0	0.00		Cooling	Heating
Exposed Floor	0		0	0 :	0	0	Exposed Floor	0	0	0.00	Vent	6.809	6,809
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00	Infil	0,000	0,000
Sub Total ==>	119,274	6,579	125,853	21	121,349	42	Sub Total ==>	-37,632	-44,635	11.53	Supply	26,915	8,921
				:							MinStop/Rh	8,921	8,921
nternal Loads				:		:	Internal Loads				Return	25,897	8,921
Lights	62,396	0	62,396	10	62.396	21	Lights	0	0	0.00	Exhaust	5,792	6,809
People	57,725	0	57,725	9	32,695	11		0	0	0.00	Rm Exh	1,018	0,000
Misc	68,268	0	68,268	9 · 11 ·		23	Misc	0	0	0.00	Auxiliary	1,010	0
	,		,		, -	-		0	-		Auxiliary	0	0
Sub Total ==>	188,389	0	188,389	31	163,311	56	Sub Total ==>	0	0	0.00			
Ceiling Load	1,362	-1,362	0	0	1,471		Ceiling Load	-3,040	0	0.00	ENGIN	NEERING C	ĸs
Ventilation Load	0	0	187,437	31 ;		0	Ventilation Load	0	-315,836	81.56			
Adj Air Trans Heat	5,915		5,915	1	5,932	2	Adj Air Trans Heat	0	0	0		Cooling	Heating
Dehumid. Ov Sizing	g		0	0			Ov/Undr Sizing	0	0	0.00	% OA	25.3	76.3
Ov/Undr Sizing	2,145		2,145	0	26	0	Exhaust Heat		3,025	-0.78			
Exhaust Heat		-1,153	-1,153	0 :			OA Preheat Diff.		-20	0.01	cfm/ft ²	1.13	0.37
Sup. Fan Heat			99,686	16			RA Preheat Diff.		-29,798	7.69	cfm/ton	530.96	
Ret. Fan Heat		2	2	0			Additional Reheat		0	0.00			
Duct Heat Pkup		0	0	0							ft²/ton	471.45	
Reheat at Design			0	0							Btu/hr·ft ²	25.45	0.00
Grand Total ==>	317,084	4,065	608,273	100.00	292,089	100.00	Grand Total ==>	-40,671	-387,262	100.00	No. People	262	

			COOLING	COIL SELE	ECTIO	N						AREA	S		HEA	TING COIL	SELECTIO	ON	
	Total ton	Capacity MBh	Sens Cap. MBh	Coil Airflow cfm	En °F	ter DB/V °F	VB/HR gr/lb	Leav °F	∕e DB/V °F	VB/HR gr/lb		Gross Total	Glas ft ²	ss (%)		Capacity MBh	Coil Airflow cfm	Ent °F	Lvg °F
Main Clg Aux Clg	50.7 0.0	608.3 0.0	525.0 0.0	26,914.9 0.0	76.6 0.0	62.5 0.0	64.8 0.0	58.5 0.0	54.8 0.0	60.2 0.0	Floor Part	23,898 0			Main Htg Aux Htg	0.0 0.0	8,920.6 0	58.5 0	76.2 0
Opt Vent	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr Roof	0 0	0	0	Preheat	0.0	6,809	29	59
Total	50.7	608.3									Wall	10,678	2,703	25	Humidif Opt Vent <i>Total</i>	0.0 0.0 0.0	0 0	0.0 0.0	0.0 0.0

 Project Name:
 City of Hope Amini Medical Center

 Dataset Name:
 C:\CDS\TRACE700\Projects\COH.trc

TRACE® 700 v6.1.3 calculated at 08:24 PM on 10/26/2008 Alternative - 1 System Checksums Report Page 3 of 12

AHU-3

<u>Appendix D</u> Schedules

COH Cooling Scl	nedule			Simulati	on type: Reduced year
January - December	Cooling design to Weekday	Start time	End time	Setpoint °F	Thermostat
		Midnight	5 a.m.	95.0	
		5 a.m.	8 p.m.	74.0	
		8 p.m.	Midnight	95.0	
January - December	Saturday	Start time	End time	Setpoint °F	Thermostat
		Midnight	5 a.m.	95.0	
		5 a.m.	3 p.m.	74.0	
		3 p.m.	Midnight	95.0	
January - December	Sunday	Start time	End time	Setpoint °F	Thermostat
		Midnight	Midnight	95.0	

SCE - Elec Consumption				Simulation type: Reduced year
January - May Cooling design to Weekday	Start time	End time	Rate	Time-of-day
	Midnight	8 a.m.	Off-peak	
	8 a.m.	9 p.m.	Mid-peak	
	9 p.m.	Midnight	Off-peak	
January - May Saturday to Sunday	Start time	End time	Rate	Time-of-day
	Midnight	Midnight	Off-peak	
October - December Cooling design to Weekday	Start time	End time	Rate	Time-of-day
	Midnight	8 a.m.	Off-peak	
	8 a.m.	9 p.m.	Mid-peak	
	9 p.m.	Midnight	Off-peak	
October - December Saturday to Sunday	Start time	End time	Rate	Time-of-day
	Midnight	Midnight	Off-peak	
June - September Cooling design to Weekday	Start time	End time	Rate	Time-of-day
	Midnight	8 a.m.	Off-peak	
	8 a.m.	noon	Mid-peak	
	noon	6 p.m.	Peak	
	6 p.m.	11 p.m.	Mid-peak	
	11 p.m.	Midnight	Off-peak	
June - September Saturday to Sunday	Start time	End time	Rate	Time-of-day
	Midnight	Midnight	Off-peak	

COH Heating Sch	nedule			Simulati	on type: Reduced year
January - December	Cooling design to Weekday	Start time	End time	Setpoint °F	Thermostat
		Midnight	5 a.m.	55.0	
		5 a.m.	6 a.m.	63.0	
		6 a.m.	7 a.m.	68.0	
		7 a.m.	7 p.m.	70.0	
		7 p.m.	Midnight	55.0	
January - December	Saturday	Start time	End time	Setpoint °F	Thermostat
		Midnight	5 a.m.	55.0	
		5 a.m.	6 a.m.	63.0	
		6 a.m.	7 a.m.	68.0	
		7 a.m.	2 p.m.	70.0	
		2 p.m.	Midnight	55.0	
January - December	Sunday	Start time	End time	Setpoint °F	Thermostat
		Midnight	Midnight	55.0	

Storage					Simulation type: Reduced year
January - December	Cooling design to Sunday	Start time	End time	<u>Mode</u>	Thermal storage
		Midnight	7 a.m.	Charge	
		7 a.m.	7 p.m.	Discharge	
		7 p.m.	Midnight	Charge	

		Schedule	s	
Misc - Low rise office			Simula	ation type: Reduced year
January - December Cooling design to Weekday	Start time	End time	Percentage	Utilization
	Midnight	7 a.m.	5.0	
	7 a.m.	8 a.m.	80.0	
	8 a.m.	10 a.m.	90.0	
	10 a.m.	noon	95.0	
	noon	2 p.m.	80.0	
	2 p.m.	4 p.m.	90.0	
	4 p.m.	5 p.m.	95.0	
	5 p.m.	6 p.m.	80.0	
	6 p.m.	7 p.m.	70.0	
	7 p.m.	8 p.m.	60.0	
	8 p.m.	9 p.m.	40.0	
	9 p.m.	10 p.m.	30.0	
	10 p.m.	Midnight	20.0	
leating Design	Start time	End time	Percentage	Utilization
	Midnight	Midnight	0.0	
January - December Saturday to Sunday	Start time	End time	Percentage	Utilization
	Midnight	Midnight	5.0	

COH 24-7 Cooling Schedule			Simul	ation type: Reduced year
– January - December Cooling design to Sunday	Start time	End time	Setpoint °F	Thermostat
	Midnight	Midnight	78.0	

COH 24-7 Heating Schedule			Simulati	on type: Reduced year
January - December Cooling design to Sunday	Start time	End time	Setpoint °F	Thermostat
	Midnight	6 a.m.	60.0	
	6 a.m.	10 p.m.	68.0	
	10 p.m.	Midnight	60.0	

COH Room Exha	ust Fans			Simulat	tion type: Reduced year
January - December	Cooling design to Weekday	Start time	End time	<u>Percentage</u>	Utilization
		Midnight	5 a.m.	0.0	
		5 a.m.	8 p.m.	100.0	
		8 p.m.	Midnight	0.0	
January - December	Saturday	Start time	End time	Percentage	Utilization
		Midnight	5 a.m.	0.0	
		5 a.m.	3 p.m.	100.0	
		3 p.m.	Midnight	0.0	
January - December	Sunday	Start time	End time	Percentage	Utilization
		Midnight	Midnight	0.0	
Heating Design		Start time	End time	<u>Percentage</u>	Utilization
		Midnight	Midnight	0.0	

Parking lot lights			Simulatio	n type: Reduced year
January - December Cooling design to Sunday	Start time	End time	Percentage	Utilization
	Midnight	7 a.m.	100.0	
	7 a.m.	6 p.m.	0.0	
	6 p.m.	Midnight	100.0	
Heating Design	Start time	End time	<u>Percentage</u>	Utilization
	Midnight	7 a.m.	100.0	
	7 a.m.	6 p.m.	0.0	
	6 p.m.	Midnight	100.0	

COH 24-7 Equip	Schedule			Simulat	tion type: Reduced year
January - December	Cooling design to Sunday	Start time	End time	Percentage	Utilization
		Midnight	5 a.m.	10.0	
		5 a.m.	6 a.m.	30.0	
		6 a.m.	11 a.m.	45.0	
		11 a.m.	6 p.m.	30.0	
		6 p.m.	7 p.m.	60.0	
		7 p.m.	8 p.m.	80.0	
		8 p.m.	9 p.m.	90.0	
		9 p.m.	10 p.m.	80.0	
		10 p.m.	11 p.m.	60.0	
		11 p.m.	Midnight	30.0	
Heating Design		Start time	End time	<u>Percentage</u>	Utilization
		Midnight	Midnight	0.0	

COH Lighting				Simulatio	n type: Reduced year
January - December	Cooling design to Weekday	Start time	End time	Percentage	Utilization
		Midnight	8 a.m.	5.0	
		8 a.m.	6 p.m.	90.0	
		6 p.m.	7 p.m.	40.0	
		7 p.m.	Midnight	5.0	
January - December	Saturday	Start time	End time	<u>Percentage</u>	Utilization
		Midnight	8 a.m.	5.0	
		8 a.m.	noon	90.0	
		noon	1 p.m.	40.0	
		1 p.m.	2 p.m.	30.0	
		2 p.m.	Midnight	5.0	
January - December	Sunday	Start time	End time	Percentage	Utilization
		Midnight	Midnight	5.0	
Heating Design		Start time	End time	Percentage	Utilization
		Midnight	Midnight	0.0	

Schedules

Available (100%)			Simulati	on type: Reduced year
January - December Cooling design to Sunday	Start time	End time	Percentage	Utilization
	Midnight	Midnight	100.0	
Heating Design	Start time	End time	Percentage	Utilization
	Midnight	Midnight	100.0	

COH Receptacle

COH Receptacle				Simulatio	n type: Reduced year
January - December	Cooling design to Weekday	Start time	End time	Percentage	Utilization
		Midnight	8 a.m.	5.0	
		8 a.m.	noon	50.0	
		noon	1 p.m.	30.0	
		1 p.m.	6 p.m.	50.0	
		6 p.m.	7 p.m.	35.0	
		7 p.m.	Midnight	5.0	
January - December	Saturday	Start time	End time	<u>Percentage</u>	Utilization
		Midnight	8 a.m.	5.0	
		8 a.m.	1 p.m.	25.0	
		1 p.m.	2 p.m.	15.0	
		2 p.m.	Midnight	5.0	
January - December	Sunday	Start time	End time	<u>Percentage</u>	Utilization
		Midnight	Midnight	5.0	
Heating Design		Start time	End time	Percentage	Utilization
		Midnight	Midnight	0.0	

SCE - Elec Dema	Simulation type: Reduced year				
January - December	Cooling design to Weekday	Start time	End time	Rate	Time-of-day
		Midnight	noon	Mid-peak	
		noon	6 p.m.	Peak	
		6 p.m.	Midnight	Mid-peak	
January - December	Saturday to Sunday	Start time	End time	Rate	Time-of-day
		Midnight	Midnight	Mid-peak	

COH Occupancy				Simulatio	n type: Reduced year
January - December	Cooling design to Weekday	Start time	End time	Percentage	Utilization
		Midnight	7 a.m.	0.0	
		7 a.m.	8 a.m.	5.0	
		8 a.m.	11 a.m.	50.0	
		11 a.m.	1 p.m.	30.0	
		1 p.m.	6 p.m.	50.0	
		6 p.m.	7 p.m.	30.0	
		7 p.m.	Midnight	0.0	
January - December	Saturday	Start time	End time	Percentage	Utilization
		Midnight	7 a.m.	0.0	
		7 a.m.	8 a.m.	5.0	
		8 a.m.	noon	15.0	
		noon	2 p.m.	5.0	
		2 p.m.	Midnight	0.0	
January - December	Sunday	Start time	End time	Percentage	Utilization
		Midnight	Midnight	0.0	
Heating Design		Start time	End time	Percentage	Utilization
		Midnight	Midnight	0.0	

Off (0%)	Simulation type: Reduced year			
January - December Cooling design to Sunday	Start time	End time	<u>Status</u>	Equipment operation
	Midnight	Midnight	Off	

			Ut	ility Rates			
CE Schedule - TOU-8 De	emand					CO	H - Electric Demano
Electric demand	Min Charge	0	Start period	January		Rate	<u>Cutoff</u>
On peak	Min demand	0	End period	December	\$	24.950	
	Fuel adjustment	0					
	kWh/kW flag	No					
	Customer charge	334.55					
Electric demand	Min Charge	0	Start period	January		Rate	Cutoff
Mid peak	Min demand	0	End period	December	\$	2.580	
	Fuel adjustment	0					
	kWh/kW flag Customer charge	No 334.55					
	Customer charge	334.33					
CE Schedule - Energy C	harges			COH - Electr	ic Charg	es On peak	Mid Peak Off Pea
Electric consumption	Min Charge	0	Start period	January		Rate	<u>Cutoff</u>
On peak	Min demand	0	End period	May	\$	0.078	
	Fuel adjustment	0					
	kWh/kW flag	No					
	Customer charge	0					
Electric consumption	Min Charge	0	Start period	January		Rate	<u>Cutoff</u>
Off peak	Min demand	0	End period	May	\$	0.056	
	Fuel adjustment	0					
	kWh/kW flag	No					
	Customer charge	0					
Electric consumption	Min Charge	0	Start period	January		Rate	Cutoff
Mid peak	Min demand	0	End period	May	\$	0.078	
	Fuel adjustment	0					
	kWh/kW flag	No					
	Customer charge	0					
Electric consumption	Min Charge	0	Start period	October		Rate	Cutoff
On peak	Min demand	0	End period	December	\$	0.078	
	Fuel adjustment	0					
	kWh/kW flag	No					
	Customer charge	0					

Utility Rates							
Electric consumption	Min Charge	0	Start period	October		Rate	Cutoff
Off peak	Min demand	0	End period	December	\$	0.056	<u></u>
Olipeak	Fuel adjustment	0	Life period	December			
	kWh/kW flag	No					
	Customer charge	0					
Electric consumption	Min Charge	0	Start period	October		Rate	Cutoff
Mid peak	Min demand	0	End period	December	\$	0.078	<u></u>
	Fuel adjustment	0	End period	December			
	kWh/kW flag	No					
	Customer charge	0					
Electric consumption	Min Charge	0	Start period	June		Rate	Cutoff
On peak	Min demand	0	End period	September	\$	0.129	
on poak	Fuel adjustment	0	Ena ponoa	Coptember			
	kWh/kW flag	No					
	Customer charge	0					
Electric consumption	Min Charge	0	Start period	June		Rate	Cutoff
Off peak	Min demand	0	End period	September	\$	0.055	
- P	Fuel adjustment	0					
	kWh/kW flag	No					
	Customer charge	0					
Electric consumption	Min Charge	0	Start period	June		Rate	Cutoff
Mid peak	Min demand	0	End period	September	\$	0.069	
r	Fuel adjustment	0					
	kWh/kW flag	No					
	Customer charge	0					
			Ba	se Utilities			

Base Utilities

Parking lot lights

Comments	
Schedule	Parking lot lights
Energy Type	Electricity
Hourly demand	0.10 kW
Entering	°F
Leaving	°F

<u>Appendix E</u> Monthly Utility Costs

MONTHLY UTILITY COSTS

By META ENGINEERS

Monthly Utility Costs													
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative 1													
Electric													
On-Pk Cons. (\$)	0	0	0	0	0	2,400	2,200	2,529	2,197	0	0	0	9,327
Off-Pk Cons. (\$)	1,399	1,270	1,312	1,393	1,362	1,045	1,251	1,067	1,174	1,363	1,328	1,461	15,425
Mid-Pk Cons. (\$)	2,999	2,722	3,299	2,872	3,166	1,818	1,660	1,909	1,657	3,174	3,010	2,857	31,142
On-Pk Demand (\$)	3,986	4,025	4,025	4,020	4,035	4,049	4,082	4,083	4,074	4,019	3,968	3,953	48,321
Mid-Pk Demand (\$)	746	747	748	748	750	750	752	752	752	751	749	747	8,993
Total (\$):	9,130	8,764	9,384	9,033	9,313	10,064	9,945	10,342	9,854	9,307	9,054	9,019	113,208
Monthly Total (\$):	9,130	8,764	9,384	9,033	9,313	10,064	9,945	10,342	9,854	9,307	9,054	9,019	113,208

Building Area = $34,684 \text{ ft}^2$ Utility Cost Per Area = $3.26 \text{ $/ft}^2$

<u>Appendix F</u> EnergyPro Results / Energy Cost Budget

savings 🌞		UTILITY IN		WORKSHEET	UTIL-1
PROJECT NAME				DATE	
		dicine Center			/27/2008
Step 1 ANNUAL		USE (kBtu/sqft- Proposed	y r) Margin	Step 2 PERCENT BEL Adjusted TDV Energy Use	OW TITLE 24
	Standard			(Excludes Process Energy)	
Space Heating	8.11	4.28	3.83	Standard Proposed Design Design	Margin
Space Cooling Indoor Fans	226.70	123.90	102.80		70.96
	93.17	101.36	-8.19	502.28 - 431.32 = 5tandard	70.96 % Below
Heat Rejection	0.00	34.74	-34.74	Margin Design	Title 24*
Pumps	3.38	17.85	-14.47	70.96 / 502.28 =	14.1%
Domestic Hot Water	5.58	5.58	0.00	* % Below Title 24 is limited to a maximu	um of 25% in the
Lighting	78.13	56.40	21.73	incentive rate calculation. Incentive Eligibility Yes	s No
Receptacle	87.20	87.20	0.00	Incentive Eligibility Yes Owner Incentive (>=10%): X	
Process	431.39	431.39	0.00		
TOTALS:	933.67	862.70	70.96	Conditioned Floor Area = 35,17	^{'8} sq. ft.
Step 3 ANNUAL	SITE ENERGY	USE			
	Standard	Proposed		ne values shown here are based upon the results nergyPro Noncompliance energy analysis that inc	
Peak Demand (kW)	380.5	312.5		uilding operating profile information supplied by th	
	Stand Electricity	ard Natural Gas	Prop Electricity	Natural Gas Electricity	in Natural Gas
ENERGY COMPONENT	(kWh)	(therms)	(kWh)	(therms) (kWh)	(therms)
Space Heating	0	8,853	0	0 0	8,853
Space Cooling	424,168	0	228,163	0 196,005	0
Indoor Fans	282,326	0	195,140	0 87,186	0
Heat Rejection	200,520	0	128,041	0 72,479	0
Pumps	59,306	0	38,972	0 20,334	0
Domestic Hot Water	0	1,326	0	0 0	1,326
Lighting	190,188	0	86,436	0 103,753	0
Receptacle	85,077	0	85,077	0 0	0
Process	681,104	0	681,104	0 0	0
TOTALS:					
	1,922,689	10,179	1,442,933	0 479,756	10,179
Step 4 POTENT	IAL OWNER IN	CENTIVE CALCU	JLATION w Title 24*	Incentive Savings	
			n step 2)		btotal
AS ED/JON /METERATIONAL® Company	Electricity	10.C¢ [(14.1% - 10%)]	$= \underbrace{14.1}_{\text{ψ Wh}} X \underbrace{479,756}_{\text{$kWh}} = \underbrace{\$}_{\text{$kWh}}$	67,646 +
	Natural Ga	s 34.C¢[(<u>14.1%</u> - 10%) x 4	$[4.4] = \underbrace{52.0}_{\text{¢ nerm}} \times \underbrace{10,179}_{\text{therm}} = \$$	5,293
	С	wner Incent	ive	(\$150,000 max)	= \$ 72,939
element of the Saving	js By Design vritten approv	Program for ne al from Southe	ew constructio ern California I	hrough the Whole Building Ap n and are NOT GUARANTEE Edison during conceptual or e qualify.	D. Projects
				* % Below in this equation is lim	nited to 25%
F	Run Initiation T	ime: 02/27/08 1	5:59:03 F	Run Code: 1204156743	
EnergyPro 4.4 by EnergySo		Number: 5833		iber: 24458	Page: 36 of 39

Amini Transfusion Medicine Center 2/27/2008 Step 1 ANNUAL TDV ENERGY USE (kBtu/sqft+yr) Margin ENERGY COMPONENT Standard Proposed Margin Space Heating 8.11 4.28 3.33 Space Cooling 226.70 123.90 102.80 Indoor Fans 93.17 101.36 8.19 Heat Rejection 0.00 34.74 -34.74 Domestic Hot Water 5.58 5.58 0.00 Lighting 78.13 56.40 21.73 Receptacle 87.20 87.20 0.00 Process 431.39 431.39 0.00 ToTALS 933.67 862.70 70.96 Standard Proposed Margin The values shown here are based upon the results of an incentive (s=15%): ToTALS 933.67 862.70 70.96 Vietney: Standard Proposed Margin The values shown here are based upon the results of an incentive (s=15%): X Peak Demand (kW) 386.5 68.0 0			UTILITY IN	ICENTIVE	E WORKSH	EET	UTIL-DT	
Step 1 CANNUAL TDV ENERGY USE (kBru/sqft-yr) Step 2000000000000000000000000000000000000		\cup \mathbf{V}				DATE		
ENERGY COMPONENT. Standard. Proposed (1230) Margin (1230) Space Cooling 6.11 4.28 3.84 Jonestic Hot Water 5.86 6.66 0.00 Jornals 6.71 101.36 4.14 Jumps 3.38 17.85 1.04.07 Domestic Hot Water 5.86 6.66 0.00 Jornals 6.72.0 6.72.0 70.98 Process 6.72.0 6.72.0 70.98 Ortalls 9.33.67 0.00.0 70.98 Process 6.72.0 70.98 1.00.00 Ortalls 9.33.67 0.00.0 70.99 1.00.00 Peak Demand (kW) 30.00 312.5 0.00 0.00 1.00.00 Space Cooling 2.17.8 0.00 0.00.00	Amini Tra	ansfusion Me	dicine Center				2/27/2008	
Space Heating Space Cooling 6.1 (22,7) 4.28 (10,30) 3.88 (10,30) 1.1 (22,7) 4.28 (10,30) 3.88 (10,30) 1.1 (22,7) 1.1 (23,10) 1.1 (24,10) 1.1 (24,10) <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>LOW TITLE 24</td></th<>							LOW TITLE 24	
Space Cooling 22670 123.00 102.80 Indoor Fans 93.17 101.38 48.18 Heat Rejection 0.00 34.74 -34.74 Domestic Hot Water 5.58 5.58 0.00 Receptacle 67.20 87.20 0.00 Process 93.37 0.00 27.73 Receptacle 67.20 87.20 0.00 TOTALS: 93.47 0.00 0.00 TOTALS: 93.47 0.00 0.00 0.00 Space Cooling 47.20 87.20 0.00 0.00 TOTALS: 93.47 0.00 0.00 0.00 0.00 Space Heating Standard Proposed Margin The values shown have are based upon the results of an incentive (vertive) Net uset an incentive (vertive) Net uset an incentive (vertive) Space Heating 0 38.853 0.0 0 196.00 0 0.00 Space Heating 0 88.853 0.0 0 196.005 0 0 1.328 0 Pumps 59.06 0 <td></td> <td><u>Standard</u></td> <td>Proposed</td> <td></td> <td>Adjusted IDV E (Excludes Process Energy</td> <td>nergy Use</td> <td></td>		<u>Standard</u>	Proposed		Adjusted IDV E (Excludes Process Energy	nergy Use		
Space Heating Space	Space Heating	8.11	4.28	3.83			Margin	
Heat Rejection 0.00 34.74 -34.74 -34.74 Pumps 3.38 17.85 0.00 Lighting 78.13 66.40 21.73 Receptacle 87.20 92.00 0.00 Process 431.38 431.38 0.00 TotALS: 33.87 0.82.70 70.88 Standard Yes No No Peak Demand (kW) 300.5 70.88 0.00 Standard 92.05 0.00 0.00 0.00 Space Cooling 14.14.71 0.00 0.00 0.00 Space Cooling 14.19 0.00 0.00 0.00 0.00 Space Cooling 14.25 0.00 0.00 0.00 0.00 Space Cooling 124.168 0.00 0.00 0.00 0.00 0.00 Space Cooling 124.168 0.00 0.00 0.00 0.00 0.00 0.00 Space Cooling 124.168 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		226.70	123.90	102.80				
The Reproduct of the second s		93.17	101.36	-8.19	502.28			
Domestic Hot Water 5.58 5.58 0.00 Lighting 72.03 0.720 21.73 Receptacle 67.20 87.20 0.00 process 431.38 0.000 TOTALS: 933.67 62.70 70.96 TOTALS: 933.67 62.70 TOSE Peak Demand (kW) 380.5 312.5 62.00 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The values shown here are basey upon the results of an Area 1000 The value shown here are basey upon the results of an Area 1000 The value shown here are basey upon the results of an Area 1000 The value shown here are basey upon the results of an Area 1000 The Value shown here are basey upon the results of an Area 1000 The value shown here are basey upon the results of an Area 1000 The Value shown here are basey of a 10000 The Value shown here are basey of a 10000 The Value shown here are basey of 100000 The Value shown here are basey of 100000 The Value shown here 100000	Heat Rejection	0.00	34.74	-34.74	Margin			
Domestic Hot Water 5.58 5.58 0.00 Lighting 78.13 56.40 21.73 Receptacle 67.20 682.70 70.95 Process 431.39 682.70 70.95 Stop 3 ANNUAL SITE ENERGY USE Conditioned Floor Are = 3.5.178 sq. ft. Peak Demand (kW) 300.5 21.25 Energy Noncompliance energy analysis that incontrols using openations using of the use. Space Heating 0.00 12.5 660 Natural Gas Space Cooling 424.68 0 195.140 0 682.70 Pumps 28.226 0 195.140 0 67.186 0 Space Heating 0 38.853 0 0 67.186 0 680.853 Pumps 28.226 0 195.140 0 67.186 0 0 3.285 Domestic Hot Water 0 38.972 0 0 1.326 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pumps	3.38	17.85	-14.47	70.96	502.28	14.1%	
Lighting 72.13 56.40 21.73 10.0000 10.0000 10.000 10.000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 1	Domestic Hot Water	5.58	5.58	0.00				
Notesting 01.2 (31.3)	Lighting	78.13	56.40	21.73	incentive rate calcu	llation.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		87.20	87.20	0.00		-		
Controlled into the results of an an analysis that incorporates Step 3 ANNUAL SITE ENERGY USE Bandard Proposed Margin The values shown here are based upon the results of an Energy Fine Microing operating profile information supplied by the user. Beak Demand (kW) Standard Proposed Margin The values shown here are based upon the results of an Energy Fine Microing operating profile information supplied by the user. Standard Proposed Margin The values shown here are based upon the results of an Energy Fine Microing operating profile information supplied by the user. Standard Proposed Margin Standard Proposed Margin Standard Proposed Margin Margin Natural Gas (WMI) Natural Gas Margin Interview Mitting Proposed Margin Descention 200,520 O Algebra Operatin for Margin Marg	Process	431.39	431.39	0.00	Deelgin realin in			
Standard Peak Demand (kW)Proposed 312.5Margin (below)The values shown here are based upon the results of an Energy no block operating profile information suppleted the use:Number of the construction of the co	TOTALS:	933.67	862.70	70.96	Conditioned Flo	or Area = 35, ²	178 sq. ft.	
Peak Demand (kW) 300.5 312.5 68.0 Energy Processing profile information supplied by the user.ENERGY COMPONENTElectricityNatural Gas (kWh)ProposedMargin (therms)Space Heating08.853228.16309Space Cooling424,16808.853228.16309Indoor Fans282.3260195.14008.853Jace Cooling424,1680200.5200128.041072.4790Pumps59.306038.972001.326Domestic Hot Water01.32686.536000Ighting190.188086.536000Process681.104085.0770001.326StoredPotential Design TEAM INCENTIVE CALCULATIONNetural Gas18.7 ¢(from step 2)SubtoralMatural Gas18.7 ¢(from step 2)incentiveSavingsSubtoralMatural Gas18.7 ¢(from step 2)incentiveSavingsSubtoralDesign Team IncentivesScience and are NOTGuard and are NOTGuard and are NOTGuard and are NOTOutputDesign Team element of the Savings By Design Program for new construction and are NOTGuard and are NOTGuard and are NOTOutputDesign Team element of the Savings By Design Program for new construction and are NOTGuard and are NOTGuard and are NOTOutputDesign Team element of the Savin	Step 3 ANNUAL	SITE ENERGY	USE					
Peak Demand (kW)380.5312.668.0building operating profile information supplied by the user.StandardProposedMarginRERERY COMPONENTStandardProposedMarginStandardProposedMarginStandardProposedMarginStandardProposedMarginStandardProposedMarginStandardProposedMarginStandardProposedMarginStandardProposedMarginStandardProposedMarginDecisionStandardProposedMarginStandardProposedMarginAdvantageDecisionAdvantageDecisionStandardProposedMarginDecisionProposedMarginDecisionProposedMarginDecisionProposedMarginDecisionProposedMarginDecisionProposedMargin <td></td> <td>Standard</td> <td>Proposed</td> <td></td> <td></td> <td></td> <td></td>		Standard	Proposed					
ENERGY COMPONENTElectricityNatural Gas (therms)ElectricityNatural Gas (therms)ElectricityNatural Gas (therms)Space Heating08.8530008.853Space Cooling424.1880228.1630196.0050Indoor Fans282.3260195.140087.1860Heat Rejection200.5200128.041072.4790Pumps59.306038.972020.3340Domestic Hot Water01.3260000Idphting190.188086.4360103.7530Receptacle85.077085.0770000ToTALS:1.922.68910.1791.442.9330479.75810.179Step 4Potential Design Team IncentiveSavings (from step 2)Natural Gas18.7 \$ [(n/a)-15%) x 1.46] $= \sqrt{n/a}$ n/a Design Team IncentiveSubtoalDesign Team IncentiveSavings (from step 2)Rate(herms)Nutural Gas18.7 \$ [(n/aDesign Team IncentiveSavings (from step 2)Natural GasNatural GasNatural Gas <td c<="" td=""><td>Peak Demand (kW)</td><td>380.5</td><td>312.5</td><td></td><td></td><td></td><td></td></td>	<td>Peak Demand (kW)</td> <td>380.5</td> <td>312.5</td> <td></td> <td></td> <td></td> <td></td>	Peak Demand (kW)	380.5	312.5				
(kWh)(therms)(kWh)(therms)(kWh)(therms)Space Heating08.8530008.853Space Cooling424.1680228.1630196.0050Indoor Fans282.3260195.140087.1860Heat Rejection200.5200128.041072.4790Pumps59.30601.3260001.326Jomestic Hot Water01.3260001.326Lighting190.188086.4360103.7530Receptacle85.0770681.1040000TOTALS:1.922.68910.1791.442.9330479.75610.179Step 4POTENTIAL DESIGN TEAM INCENTIVE CALCULATION* Below Title 24* (from step 2)Savings (from step 2)Step 4Design Team Incentive (from step 2)Natural Gas18.7 ¢ [(_na - 15%) x 1.46] =naSavings (from step 3)SubtotalDesign Team Incentive (from step 2)Colspan="4">Concentive Savings (from step 2)Savings (from step 3)Other colspan="4">Other colspan="4">Savings (from step 3)SubtotalOther colspan="4">Savings (from step 2)Savings (from step 2)Notural Gas (from step								
Space Cooling Space Cooling Mador Fans 424,168 424,168 424,168 424,168 424,168 424,168 428,163 40 428,163 40 428,163 40 428,163 40 40 47,479 40 47,479 40 40 40 40 40 40 40 40 40 40	ENERGY COMPONENT	electricity (kWh)						
Indoor Fans Heat Rejection282,326 200,5200195,140 128,041087,186 00Pumps Domestic Hot Water Lighting Receptacle01,326 86,077001,326 0001,326 0001,326 0001,326 0001,326 0001,326 0001,326 00001,326 00001,326 000 <td>Space Heating</td> <td>0</td> <td>8,853</td> <td>0</td> <td>0</td> <td>0</td> <td>8,853</td>	Space Heating	0	8,853	0	0	0	8,853	
Heat Rejection 200,520 0 128,041 0 72,479 0 Pumps 59,306 0 38,972 0 20,334 0 Domestic Hot Water 0 1,326 0 0 0 103,753 0 Ighting 190,188 0 86,436 0 103,753 0 0 Receptacle 85,077 0 85,077 0 0 0 0 0 Process 681,104 0 681,104 0 0 0 0 0 0 TOTALS: 1,922,689 10,179 1,442,933 0 479,756 10,179 Step 4 POTENTIAL DESIGN TEAM INCENTIVE CALCULATION Step 4 DETENTIAL DESIGN TEAM INCENTIVE CALCULATION Step 4 DETENTIAL DESIGN TEAM INCENTIVE CALCULATION Step 5 Subtotal 10,179 1,442,933 0 479,756 10,179 Step 6 Subtotal 10,179 1,442,933 0 5,077 Electricity 5.0 ¢ [(n/a - 15%)/3] = n/a ¢ wings (from step 2) kwing (from step 3) subtotal 0 (from step 2) (from step 3) subtotal 0 (from step 2) (from step 3) subtotal 0 (from step 2) (from step 3) (from step 4) (from step 3) (from step 3) (from step 4) (from step 3) (from step 4) (from 4) (from 4) (from 4	Space Cooling	424,168	0	228,163	0	196,005	0	
Pumps Pumps Domestic Hot Water Lighting Receptacle B5,077 Process B61,104 Domestic Hot Water 190,188 0 190,188 0 B64,366 0 B64,366 0 B64,366 0 B64,366 0 B64,366 0 B64,366 0 COTALS: 1,922,689 10,179 DESIGN TEAM INCENTIVE CALCULATION Step 4 POTENTIAL DESIGN TEAM INCENTIVE CALCULATION Step 4 Step	Indoor Fans	282,326	0	195,140	0	87,186	0	
Domestic Hot Water Lighting Receptacle B5,077 Process TOTALS: 1,922,689 10,179 1,922,689 10,179 1,442,933 0 1,326 0 0 0 103,753 0 0 103,753 0 0 103,753 0 0 103,753 0 0 10,179 1,442,933 0 10,179 1,442,933 0 10,179 1,442,933 0 10,179 10,179 Subtoal Feature (from step 3) Subtoal (from step 3) Subtoal 10,179 Subtoal 10,276 10,276 Subtoal 10,276 10,2	Heat Rejection	200,520	0	128,041	0	72,479	0	
Lighting Receptacle Process 190,188 85,077 0 681,104 0 103,753 0 0 0 0 0 0 0 0	Pumps	59,306	0	38,972	0	20,334	0	
Receptacle Process $85,077$ $881,104$ 0 $85,077$ $681,104$ 0 <	Domestic Hot Water	0	1,326	0	0	0	1,326	
Process $\underbrace{681,104}_{1,922,689} \underbrace{0}_{0,179} \underbrace{681,104}_{1,442,933} \underbrace{0}_{0,179} \underbrace$	Lighting	190,188	0	86,436	0	103,753	0	
TOTALS:1,922,68910,1791,442,9330479,75610,179Step 4POTENTIAL DESIGN TEAM INCENTIVE CALCULATIONSelew Title 24* (from step 2)Incentive Savings (from step 3)SubtotalSubtotal% Below Title 24* (from step 2)Incentive Rate (from step 3)Subtotal (from step 3)Subtotal (from step 3)Natural Gas18.7 \$\eta [(n/a - 15%) / 3] $= (n/a) + (n$	Receptacle	85,077	0	85,077	0	0	0	
Step 4POTENTIAL DESIGN TEAM INCENTIVE CALCULATIONStep 4POTENTIAL DESIGN TEAM INCENTIVE CALCULATIONSelectricity $5.C \notin [(n/a - 15\%)/3] = n/a \times n/a = s n/a \times n/a \times n/a \times n/a = s n/a \times n/a \times n/a \times n/a = s n/a \times n/a \times n/a \times n/a \times n/a = s n/a \times n/a \times n/a \times n/a \times n/a \times n/a = s n/a \times n/$	Process	681,104	0	681,104	0	0	0	
% Below Title 24* (from step 2)Incentive RateSavings (from step 3)SubtotalElectricity $5.C \notin [(n/a - 15\%)/3]$ $= (n/a) + (n/a) + (n/a) = (n/a) + (n/a) + (n/a) = (n/a) + (n$	TOTALS:	1,922,689	10,179	1,442,933	0	479,756	10,179	
$\frac{(\text{from step 2})}{(\text{from step 2})} = \frac{\text{Rate}}{(\text{from step 3})} \frac{(\text{from step 3})}{(\text{from step 3})} \frac{\text{Subtotal}}{(\text{from step 3})}$ $E \text{ectricity} 5.0 \notin [((n/a) - 15\%)/3] = (n/a) \times (n/a) = (s n/a)$ $Natural \text{ Gas} 18.7 \notin [((n/a) - 15\%) \times 1.46] = (n/a) \times (n/a) = (s n/a)$ $\frac{(from step 3)}{(s m/a)} = (s n/a)$ $(from$	Step 4 POTENT	IAL DESIGN TE	AM INCENTIVE	CALCULATION				
Electricity $5.C \notin [(\underline{n/a} - 15\%)/3] = \underline{n/a} \times \underline{n/a} = \underline{\$ n/a}$ Natural Gas $18.7 \notin [(\underline{n/a} - 15\%) \times 1.46] = \underline{n/a} \times \underline{n/a} = \underline{\$ n/a}$ Design Team Incentive Potential incentives indicated on this report are available only through the Whole Building Approach- Design Team element of the Savings By Design Program for new construction and are NOT GUARANTEED. Projects MUST receive prior, written approval from Southern California Edison during conceptual or early design development and must meet all other program requirements to qualify. *% Below in this equation is limited to 25%							ubtotal	
Natural Gas $18.7 \notin [(n/a - 15\%) \times 1.46] = \underbrace{m/a}_{\begin{subarray}{c} n/a \\ \end{subarray}} \underbrace{m/a}_{\begin{subarray}{c} n/a \\ \end{subarray}} \underbrace{m/a}_{\begin{subarray}{c} n/a \\ \end{subarray}} \underbrace{m/a}_{\begin{subarray}{c} \end{subarray}} m$		Flootrigity	, international contractions in the second sec	 ` <i>`</i>				
$ \underbrace{\text{Design Team Incentive}}_{\text{($50,000 max)}} = \underbrace{\text{m/a}}_{\text{($50,000 max)}} = \underbrace{\text{m/a}}_$		LIECTICITY	5.0¢ [(<u>n/a</u> - 1376) / 3j			n/a	
Design Team Incentive (\$50,000 max) = (\$ n/a) Potential incentives indicated on this report are available only through the Whole Building Approach- Design Team element of the Savings By Design Program for new construction and are NOT GUARANTEED. Projects MUST receive prior, written approval from Southern California Edison during conceptual or early design development and must meet all other program requirements to qualify. * % Below in this equation is limited to 25%		Natural Ga	s 18.7¢ [(n/a - 15%)x 1.46	6] =n/a		n/a	
Design Team element of the Savings By Design Program for new construction and are NOT GUARANTEED. Projects MUST receive prior, written approval from Southern California Edison during conceptual or early design development and must meet all other program requirements to qualify.		Design 7	Team Incent	ive	¢ herm) = \$ n/a	
Design Team element of the Savings By Design Program for new construction and are NOT GUARANTEED. Projects MUST receive prior, written approval from Southern California Edison during conceptual or early design development and must meet all other program requirements to qualify.	Potential incentives in	dicated on th	is report are av	ailable onlv t	hrough the Who	le Buildina A	pproach-	
GUARANTEED. Projects MUST receive prior, written approval from Southern California Edison during conceptual or early design development and must meet all other program requirements to qualify.								
* % Below in this equation is limited to 25%	GUARANTEED. Proj	ects MUST re	eceive prior, wr	itten approval	I from Southern	California Ec	lison during	
	conceptual or early de	esign develop	ment and mus	t meet all othe	er program requ	irements to c	lualify.	
Run Initiation Time: 02/27/08 15:59:03 Run Code: 1204156743							limited to 25%	
EnergyPro 4.4 by EnergySoft User Number: 5833 Job Number: 24458 Page: 37 of 39						56743	Page: 27 of 20	

Energy Cost Budget / PRM Summary

By META ENGINEERS

Project Name			1			
City: Duarte (California		Weather Dat	a: Pasadena	, California (CTZ	09)
Note: The percentage displayed for the "Proposed/ Base %" column of the base case is actually the percentage of the total energy consumption. * Denotes the base alternative for the ECB study.			* Alt-1			
			Energy 10^6 Btu/yr	Proposed / Base %	Peak kBtuh	
Lighting - Co	onditioned	290.3	6	91		
Space Heating		Electricity	0.8	0	0	
		Purchased Steam	26.2	1	30	
Space Cooling		Purchased Chilled Water	2,233.7	46	1,127	
Pumps Electricity		Electricity	44.5	1	19	
Fans - Condi	Fans - Conditioned Electricity		388.0	8	165	
Receptacles - Conditioned Electricity		Electricity	1,837.5	38	383	
Stand-alone	Stand-alone Base Utilities Electricity		27.4	1	6	
Total Building Consumption			4,848.4			
			* Alt-1	COH Energy	Model	
Total Number of hours heating load not met Number of hours cooling load not met				732 5		
			* Alt-1 COH Energy Model			
			Energy 10^6 Btu		st/yr \$/yr	
Electricity			2,588.5	; 1	13,208	
Purchased Chilled Water			2,233.7	,	0	
Purchased Steam			26.2		0	
Total		4,848	4	13,208		